Radiolabeled novel mAb 4G1 for immunoSPECT imaging of EGFRvIII expression in preclinical glioblastoma xenografts
نویسندگان
چکیده
Epidermal growth factor receptor mutant III (EGFRvIII) is exclusively expressed in tumors, such as glioblastoma, breast cancer and hepatocellular carcinoma, but never in normal organs. Increasing evidence suggests that EGFRvIII has clinical significance in glioblastoma prognosis due to its enhanced tumorigenicity and chemo/radio resistance, thus the development of an imaging approach to early detect EGFRvIII expression with high specificity is urgently needed. To illustrate this point, we developed a novel anti-EGFRvIII monoclonal antibody 4G1 through mouse immunization, cell fusion and hybridoma screening and then confirmed its specificity and affinity by a serial of assays. Following biodistribution and small animal single-photon emission computed tomography (SPECT/CT) imaging of 125I-4G1 in EGFRvIII positive/negative tumor-bearing mice were performed and evaluated to verify the tumor accumulation of this radiotracer. The biodistribution indicated that 125I-4G1 showed prominent tumor accumulation at 24 h post-injection, which reached maximums of 11.20 ± 0.75% ID/g and 13.98 ± 0.57% ID/g in F98npEGFRvIII and U87vIII xenografts, respectively. In contrast, 125I-4G1 had lower tumor accumulation in F98npEGFR and U87MG xenografts. Small animal SPECT/CT imaging revealed that 125I-4G1 had a higher tumor uptake in EGFRvIII-positive tumors than that in EGFRvIII-negative tumors. This study demonstrates that radiolabeled 4G1 can serve as a valid probe for the imaging of EGFRvIII expression, and would be valuable into the clinical translation for the diagnosis, prognosis, guiding therapy, and therapeutic efficacy evaluation of tumors.
منابع مشابه
Retargeted human avidin-CAR T cells for adoptive immunotherapy of EGFRvIII expressing gliomas and their evaluation via optical imaging
There has been significant progress in the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. However, the challenge of monitoring the therapy in real time has been continually ignored. To address this issue, we developed optical molecular imaging approaches to evaluate a recently reported novel CAR strategy for adoptive immunotherapy agai...
متن کاملMolecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts.
Glioblastoma multiforme (GBM) is a malignant primary brain tumor with a mean survival of 15 months with the current standard of care. Genetic profiling efforts have identified the amplification, overexpression, and mutation of the wild-type (wt) epidermal growth factor receptor tyrosine kinase (EGFR) in ≈ 50% of GBM patients. The genetic aberration of wtEGFR is frequently accompanied by the ove...
متن کاملAssessment of epidermal growth factor receptor status in glioblastomas
Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...
متن کاملCell-SELEX Aptamer for Highly Specific Radionuclide Molecular Imaging of Glioblastoma In Vivo
Glioblastoma (GBM) is the most frequent and aggressive primary adult brain tumor with poor prognosis. Epidermal growth factor receptor variant III (EGFRvIII) is the most common and highly oncogenic EGFR mutant in GBM. With the aim to generate specific molecular probes able to target EGFRvIII with high affinity, we selected four DNA aptamers (U2, U8, U19 and U31) specifically bound to U87-EGFRvI...
متن کاملEGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts.
Receptor tyrosine kinase (RTK) systems, such as hepatocyte growth factor (HGF) and its receptor c-Met, and epidermal growth factor receptor (EGFR), are responsible for the malignant progression of multiple solid tumors. Recent research shows that these RTK systems comodulate overlapping and dynamically adaptable oncogenic downstream signaling pathways. This study investigates how EGFRvIII, a co...
متن کامل